- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Abdelmalek, Andro (1)
-
Liu, Yang (1)
-
Zhang, Xiaoxiao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper, an experimental study was conducted to characterize the dynamics and thermal evolutions of colloidal droplets impinging and freezing on solid surfaces with different wettabilities (i.e., superhydrophobic vs. hydrophilic) towards the development of a novel freezing-based inkjet additive manufacturing (AM) technology. The experiments were carried out in the Freeze Layering Inkjet Printing (FLIP) facility in the Mechanical Engineering Department of the City College of New York (CCNY). While the transient impinging/freezing dynamics of colloidal droplets were resolved by using a high-speed imaging system, the thermal evolutions of the freezing colloidal droplets were also characterized by using a high-speed high-resolution Infrared (IR) thermal imaging system. In addition, the deposition patterns formed under the conventional evaporation-based approach and the novel freezing-sublimation approach were also evaluated by using an automated high-accuracy freeze dryer facility. It was found that the time scale of the dynamic process (i.e., impact, spreading, receding, rebounding, and settling) was much faster than the thermal process (i.e., nucleation and solidification) for both surfaces. The dynamics of the colloidal droplets during the impinging process were coupled with the thermal processes that govern the freezing of the droplets. The surface wettability had a direct effect on both the freezing footprint and the freezing rate.more » « less
An official website of the United States government
